延边信息港

当前位置:

为什么坚信人工智能

2019/04/11 来源:延边信息港

导读

没错,前段时间,好多朋友留言说——是否为了向Alpha GO致敬?怎么理解,都成。总之,Alpha GO战胜了人类,我认为,这是一个标志性的

没错,前段时间,好多朋友留言说——是否为了向Alpha GO致敬?怎么理解,都成。总之,Alpha GO战胜了人类,我认为,这是一个标志性的里程碑事件。为什么呢?先科普一下。

围棋有多难,有句话叫千古无同局。你永远不可能走过相同的一盘棋,甚至每个地方都不一样。每一种可能都是一个分支数,然后每一个分支下面新闻营销
,还有无数个分支数。而且黑白之间,怎么判断哪个黑子比哪个白字强?这是一个非常复杂的策略。

几乎算是人族历史上复杂的智力游戏。

当然,Alpha GO赢了。其实早在1997年,IBM投资的深蓝电脑也完胜了世界象棋卡斯帕罗。两场比赛都是里程碑事件。但不同在于,深蓝计算能力为10的50次方,Alpha GO为10的170次方。

两个比赛整整差了120次方。

Alpha GO学习能力太强,短时间就能掌握围棋高手的棋路。更重要的是,Alpha GO的自我学习能力更强。它可以模拟左右手互搏,相当于两个Alpha GO对战。A胜则学A,B胜就学B。随机改变棋路,不断否定自己。

具体讲,Alpha Go采用了三大核心技术:策略络(Policy Network)、估值络(Value Network)和蒙特卡罗树搜索(Monte Carlo Tree Search)。

其中,策略络负责落子选择云南角钢
。不做穷举计算,从几千种可能里面选出的几种或者几十种。将理论上存在的几百种可能的棋步,缩小到几种得分的可能。减少了计算宽度,不用去计算所有落子可能。

价值络,则负责评估落子后的局面和终胜负的概率关系,减少了计算深度。蒙特卡罗树搜索,则是采样越多,越近似解。它负责支撑两种络的解搜索——尽量找解,不保证找到解。

通过以上三种技术顺利完成了整个Alpha Go强大自学习能力,以及与之匹配的强大计算能力和概率生成。

尽管如此,象棋和围棋的计算难度,仍不可等同于一个量级。象棋子数较少,每个子都有固定走法,计算时可以遍历每种可能,从而决定当前落子解。

但,围棋不行。有人对围棋和象棋的可能变化做过统计:象棋的变化是3.74×10^248,而围棋是1.73×10^686。

对于围棋,若想做到像象棋一样遍历,运算量会大到目前机器无法承受。原来的方法不适用了。所以,要引入一套人类智能的研究成果——深度学习算法。

近,我也深度学习了深度学习。我突然发现——深度学习是计算机历史上出现过简单、美丽的东西。我也可以去写一个以前,可能在我当程序员,无法完成的一些图象识别的基本算法结构。

它只需要通过像搭积木一样地搭建那些神经络的组合,用数据灌入到络,你就可以惊奇地等待它会发生什么。而等它发生后,你会发现,比人类几十年积累的很多算法的效果要好得多得多。

在图象识别领域,三年前还没有人认为,计算机能够通过各种算法完成对人类图象识别能力的超越。但深度学习引入后,计算机图像识别能力取得了飞速进展。新近研究的超级计算机Minwa,在一项备受关注的人工智能基准测试Image Net取得了世界成绩,错误率仅为4.58%,超越了微软和谷歌。此前,世界记录4.82%由谷歌创造,同样实验,人眼辨识错误率大概为5.1%。

这意味着:今天开始,计算机对图象识别的能力开始超越人类了。而且这种识别,不会疲劳。

不仅如此,人工智能与深度学习会极大超出我们想象。比摩尔定律还要快地突破。这样的突破就可能会带来一次算法革命,甚至会使很多科技企业积累了很久的技术壁垒,荡然无存。

所有重复脑力劳动,都会被人工智能取代。人工智能将帮助人类从繁重的体力和脑力劳动中解放出来。

这是一个伟大的机会。我们不再需要每天重复进行一个已经进行过很多年的工作。

甚至,只要数据足够,电脑程序都可以产生情感。

在电影《黑客帝国》第三集开端,主角尼奥被困在火车站,碰到一个程序时,那个程序为了他的女儿(这也是生出的一个程序的小女儿)去不断地躲避大程序的追杀线卡厂家
,想把她运到一个很安全的地方时,他说,我爱我的女儿。尼奥说,你是一个程序,怎么会知道爱呢?他说:“love is aword”。

我坚信,人和机器人共存的时代必将到来——Today is history。

标签